Categories for Grassmannian Cluster Algebras of Infinite Rank

نویسندگان

چکیده

Abstract We construct Grassmannian categories of infinite rank, providing an analogue the cluster introduced by Jensen, King, and Su. Each category rank is given as graded maximal Cohen–Macaulay modules over a certain hypersurface singularity. show that generically free $1$ in are bijection with Plücker coordinates appropriate algebra rank. Moreover, this structure preserving, it relates rigidity to compatibility coordinates. Along way, we develop combinatorial formula compute dimension $\textrm {Ext}^{1}$-spaces between any two

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CLUSTER ALGEBRAS AND CLUSTER CATEGORIES

These are notes from introductory survey lectures given at the Institute for Studies in Theoretical Physics and Mathematics (IPM), Teheran, in 2008 and 2010. We present the definition and the fundamental properties of Fomin-Zelevinsky’s cluster algebras. Then, we introduce quiver representations and show how they can be used to construct cluster variables, which are the canonical generator...

متن کامل

Cluster algebras of infinite rank

Holm and Jørgensen have shown the existence of a cluster structure on a certain category D that shares many properties with finite type A cluster categories and that can be fruitfully considered as an infinite analogue of these. In this work we determine fully the combinatorics of this cluster structure and show that these are the cluster combinatorics of cluster algebras of infinite rank. That...

متن کامل

cluster algebras and cluster categories

these are notes from introductory survey lectures given at the institute for studies in theoretical physics and mathematics (ipm), teheran, in 2008 and 2010. we present the definition and the fundamental properties of fomin-zelevinsky’s cluster algebras. then, we introduce quiver representations and show how they can be used to construct cluster variables, which are the canonical generators of ...

متن کامل

Graded Quantum Cluster Algebras of Infinite Rank as Colimits

We provide a graded and quantum version of the category of rooted cluster algebras introduced by Assem, Dupont and Schiffler and show that every graded quantum cluster algebra of infinite rank can be written as a colimit of graded quantum cluster algebras of finite rank. As an application, for each k we construct a graded quantum infinite Grassmannian admitting a cluster algebra structure, exte...

متن کامل

Cluster Algebras and Cluster Categories

These are notes from introductory survey lectures given at the Institute for Studies in Theoretical Physics and Mathematics (IPM), Teheran, in 2008 and 2010. We present the definition and the fundamental properties of Fomin-Zelevinsky’s cluster algebras. Then we introduce quiver representations and show how they can be used to construct cluster variables, which are the canonical generators of c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2023

ISSN: ['1687-0247', '1073-7928']

DOI: https://doi.org/10.1093/imrn/rnad004